Section 5.1/2: Divergence of \(\frac{\hat{r}}{r^2}\) and One Dimensional Dirac
Divergence: \(\nabla \cdot v = \frac{1}{r^2} \frac{\partial}{\partial{r}} (r^2 * \frac{1}{r^2}) = \frac{1}{r^2} * \frac{\partial}{\partial{r}} (1) = 0 \)
Apply Divergence Theorem: \( \oint_S v \cdot \partial{a} = \int \frac{1}{r^2} \boldsymbol{\hat{r}} \cdot \partial{l_{\theta}} \partial{l_{\phi}\boldsymbol{\hat{r}}} =
\int \frac{1}{r^2} * r^2 \sin{\theta} \partial{\theta} \partial{\phi} = \int_0^{\pi} \sin{\theta} \partial{\theta} \int_0^{2\pi} \partial{\phi} = 2* 2\pi = 4\pi\)
BUT \(\int \nabla \cdot v \partial{\tau} = 0?\)
We need a special mathematical object to represent situations such as mass of point particle. Mass of a point particle is finite, zero everywhere except at the location of the particle.
This mathematical object is called Dirac Delta Function
Thus behavior of divergence of \(\frac{\hat{r}}{r^2}\) can be modeled by Dirac delta:
\(\nabla \cdot (\frac{\boldsymbol{\hat{r}}}{r^2}) = 4\pi * \delta^3(\boldsymbol{\overrightarrow{r}})\), more generally
\(\nabla \cdot (\frac{\hat{\boldsymbol{r}}_{sep}}{\overrightarrow{r^2}_{sep}}) = 4\pi * \delta^3(\overrightarrow{\boldsymbol{r}}_{sep})\), where
\(\overrightarrow{\boldsymbol{r}}_{sep}\ = \boldsymbol{r} - \boldsymbol{r'} \)